A CC licensed workshop by @tamberg, first held 07.07.2012 at SGMK MechArtLab Zirich, Switzerland, OT/
in collaboration with Ziirich loT Meetup, Perey Research & Consulting, Thomas Brithimann and SGMK. /3" %

Internet of Things Workshop
with Netduino Plus

This work by http://tamberg.org/ is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Internet

Computers, connected through Internet
protocols

Display or manipulate documents

http://blog.com/2011-09-15/todays-post.html

Internet of Things (loT)

Computers, sensors and actuators connected
through Internet protocols

Measure or manipulate physical properties

http://e-home.com/tamberg/kitchen/light

Internet-connected devices

John Romkey’s Toaster (1990, Ethernet)
Ambient Orb (2002, via pager network)

iPod (2001), iTunes Store (2003, via USB/PC)
Nike+ iPod (2006), Bracelet (2008 via USB/PC)
Rafi Haladjian’s Nabaztag (2006, Wifi)

Rob Faludi’s Botanicalls (2006, Ethernet)
Schulze&Webb Availabot (2006, via USB/PC)
iPhone (2007, GSM)

Amazon Kindle (2007, 3G)

Wafaa Bilal’s Shoot an Iraqi (2007, ?)
Withings BodyScale (2008, Wifi)

Vitality GlowCap (2008, Wifi; 2011, 3G)
BakerTweet (2009, 3G)

Adrian McEwen’s Bubblino (2009, Ethernet)
David Bowen’s Telepresent Water (2011, ?)
Nest Thermostat (2011, Wifi)

BERG’s Little Printer (2011, ?)
Supermechanical’s Twine (2012, Wifi)
Olly & Polly (2012, via USB/PC)
Koubachi Sensor (2012, Wifi)
Descriptive Camera (2012, Ethernet)

©90

loT reference model

loT hardware

Any Internet-connected computer with an
interface to the real world (sensors, actuators)

Small => can be embedded into things

Small computer = microcontroller (or board),
e.g. Arduino, Netduino Plus, BeagleBone, ...

Note: connecting your board to the Internet via a
desktop PC and USB is also fine, just a bit overkill

©90

loT hardware

g0+
BeagleBone Rev. A4
S/N: 0312BB0C0104

Micro D

Note: Thanks to TCP/IP & HTTP, any client can talk to
any service, no matter which hardware you choose

loT infrastructure services

Thingspeak and Xively to store and use sensor measurements
e.g. https://thingspeak.com/channels/9

Twitter allows objects to talk to humans or receive commands
e.g. @twrbrdg itself (f.k.a. @towerbridge)

Yaler enables remote access to Internet-connected devices
e.g. http://try.yaler.net/~arduino/led (Disclosure: I’'m a founder)

Zapier and IFTTT allow mash-ups of Webservices
e.g. http://goo.gl/7Y8a7z

©90

Just a beginning

Reactive buildings, flying / crawling loT devices,
underused devices selling themselves on Ebay...

Connected products become service avatars, or
“everything becomes a service” (e.g. car sharing,
home sharing, shoe sharing)

“Once it’s here it will no longer be called
the Internet of Things” open 10T Assembly 2012

Topics of this workshop

Getting started
(setup and programming of loT hardware)

Measuring and manipulating
(physical computing: sensors and actuators)

Connecting your device to the Internet
(loT: monitoring sensors, controlling actuators)

Mash-ups with Web-enabled devices
(together, if time permits)
How the Internet works under the hood

©90

Hands on

Broad range of topics => learn by doing

Copy&paste examples, make ‘em work for you,
https://bitbucket.org/tamberg/iotworkshop/get/tip.zip

Focus on end-to-end results, not details

Google, help each other, ask us

©90

Getting started

The IDE (Integrated Development Environment)
allows you to program your board, i.e. “make it
do something new”

You edit a program on your computer, then
upload it to your board where it’s stored in the
program memory (flash) and executed in RAM

Note: Once it has been programmed, your board

can run on its own, without another computer S 0"

Getting started with Netduino Plus

To install the Netduino IDE and SDKs, and to connect your
Netduino Plus board to your computer via USB, see

MS Visual C# Express IDE (free)
http://www.microsoft.com/visualstudio/en-us/products/2010-
editions/visual-csharp-express

MS .NET Micro Framework v4.1 SDK
http://www.netduino.com/downloads/MicroFrameworkSDK.msi
Netduino v4.1 SDK (for 32-bit / 64-bit Windows)

http://www.netduino.com/downloads/netduinosdk 32bit.exe

http://www.netduino.com/downloads/netduinosdk 64bit.exe

Measuring and manipulgting
\ov

Measuring and manipulating

loT hardware has an interface to the real world
GPIO (General Purpose Input/Output) pins

Measure: read sensor value from input pin
Manipulate: write actuator value to output pin

Inputs and outputs can be digital or analog

©90

The resistor H " H

Resistors are the workhorse of electronics

Resistance is measured in Q (Ohm) and adds up
in series; a resistors orientation doesn’t matter

A resistors Q value is color-coded right on it

Note: color codes are great, but it’s easier to use a

multi-meter if you’ve got one, and just measure Q
)

The LED @ [

The LED (Light Emitting Diode)
Is a simple, digital actuator

LEDs have a short leg (-) and a long leg (+)
and it matters how they are oriented in a circuit

To prevent damage, LEDs are used together with
a 1KQ resistor (or anything from 300Q to 2KQ)

©90

The breadboard

A breadboard lets you wire electronic
components without any soldering

Its holes are connected ITddEdnnn
® " AR RN E RN
“under the hood” as | LA AR RL

shown here
Ilddddunn
1111]]];".......
B R EEEEERER
E ER R RN EEREEREOBN

Wiring a LED with Netduino Plus

R Note: the additional
plus™ 1K Q resistor should

. T.
Y00

" be used to prevent
damage to the
pins / LED if it’s
reversed

The long leg of the
LED is connected to
SLLiiiiiiiiiiin pin 13,theshort|eg

oooooooooooooooooooo

.................... to ground (GND)

Digital output with Netduino Plus

using System.Threading; . . .
using Microsoft.SPOT.Hardware; NOte ’ bl In kl ng d LE D
using SecretLabs.NETMF.Hardware.NetduinoPlus; |S the He//o Wor/d Of
public class Program { embEddEd SOﬁwa Fe

public static void Main() {

var ledPort = new OutputPort(Pins.GPIO_D13, false);

while (true) { // loop in C# Set ledPort as wired

ledPort.Write(true); in your LED circuit
Thread.Sleep(500); // wait 500ms

ledPort.Write(false);
Thread.Sleep(500);

true = digital 1 (5V)
means LED is on,
false = digital O (OV)
) means LED is off

Actuator bonus stage

Try a switched power outlet instead of a LED
(black wire = GND)

® -

- - -

>
....

AAAAAAAAAAAA

Use a multicolor LED with the breadboard, as in
http://www.ladyada.net/learn/arduino/lesson3.html

Or solder resistors to a multicolor LED, as in
http://www.instructables.com/id/Arduino-Web-LED/

@00

The switch

A switch is a simple, digital sensor

Switches come in different forms, but all of
them in some way open or close a gap in a wire

The pushbutton switch has four legs for easier
mounting, but only two of them are needed

Note: you can also easily build your own switches,
for inspiration see e.g. http://vimeo.com/2286673

Wiring a switch with Netduino Plus

Note: the resistor in
this setup is called
pull-down ‘cause it
pulls the pin voltage
down to GND (0V) if
the switch is open

Pushbutton switch
10K Q resistor

5V

GND

(max input 5V!)

Digital input with Netduino Plus

using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;
using SecretLabs.NETMF.Hardware.NetduinoPlus;

class Program {
static void Main () {

var sensorPort = new InputPort(// e.g. button switch
Pins.GPIO_D2, false, Port.ResistorMode.Disabled);
while (true) {// loop in CH#
bool sensorValue = sensorPort.Read();
Debug.Write(sensorValue); // log true or false

! Check the output window
in VS to see the log output

Photoresistor (LDR)

: .)
A photoresistor or LDR

(light dependent resistor) is
a resistor whose resistance

depends on light intensity

An LDR can be used as a simple, analog sensor

The orientation of an LDR does not matter

©90

Wiring an LDR with Netduino Plus

Note: this setup is a
voltage-divider, as
the 5V total voltage
is divided between
LDR and resistor to
keep OV < A0 < 2.5V

Photoresistor (LDR)
10K Q resistor

5V

GND

Analog input with Netduino Plus

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;

using SecretLabs.NETMF.Hardware;

using SecretLabs.NETMF.Hardware.NetduinoPlus;

public class Program {
public static void Main () {

var sensorPort = new Analoginput(Pins.GPIO_PIN_AO);
while (true) {
int sensorValue = sensorPort.Read();
Debug.Print(sensorValue);

i Check the output window
} } in VS to see the log output

Note: use e.g. Excel to visualize values over time

Sensor bonu

Switch th,e,'LED
-
de on

Or use sensors with other wire protocols, e.g. i2c

Connecting to the Internet
v

Connecting to the Internet

Ethernet (built-in or shield), plug it in anywhere
Wi-Fi (module), configured once per location
3G (module), configured once, easy to use

Bluetooth/BLE (module), via 3G/Wi-Fi of phone
ZigBee (module), via ZigBee gateway
USB (built-in), via desktop computer

Note: in this workshop we focus on Ethernet and Wi-

Monitoring sensors

Monitoring sensors

Devices read (and cache) sensor data
Devices push data to a service with POST, PUT
Some services pull data from devices with GET

Service stores measurements, to be consumed
by humans or computers (incl. other devices)

©90

Pachube (now Xively)

The Pachube (now Xively) service lets you store,
monitor and share sensor data in open formats

PUT /v2/feeds/<your feed id>.csv HTTP/1.1\r\n
Host: api.xively.com\r\n

X-ApiKey: <your API key>\r\n Note: please visit
Content-Length: <content length>\r\n http ://Xively.CO m/
\r\n to sign up, create a
<sensor name>,<sensor value> feed with a data

GET /v2/feeds/<feed id>.json HTTP/1.1\r\n stream per sensor

Host and X-ApiKey as above..\r\n\r\n and get an API key

Pachube with Netduino Plus

http://www.gsiot.info/download/ > Projects
V20110526 Version 0.9 (beta release).zip for

NetduinoPlus > HelloPachube.sIn Note: as you send
data to xively.com

_ the Netduino Plus
Insert your feedld, apiKey and a i< to be hooked

data stream name (e.g. "voltage") up to the Internet

Check the output
window in VS to
see the log output

Analog input: LDR on AO
http://xively.com/feeds/<feed-id>

Controlling actuators

mpov

Controlling actuators

Service offers Ul or APl to control actuators
Device polls service for control data with GET

Or, service pushes control data to device with
POST or PUT

Device writes control data to actuators

©90

Web service with Netduino Plus

http://www.gsiot.info/download/ > Projects
V20110526 Version 0.9 (beta release).zip for
NetduinoPlus > LedControllerHtml.sIn

©90

Yaler

The Yaler relay provides a public and stable URI

to access Web services behind a firewall or NAT
@

HTTP/1.1 POST /device-id

PTTH/1.0 Upgradef PTTH/1.0
Connection: Upgrade
Host: yaler.net

©

GET /device-id/resource HTTP/1.1 101
Host: yaler.net Switching Protocols
Upgrade: PTTH/1.0

Connection: Upgrade Note: please V|S|t
4 - -
CET ekeiresougg http://yaler.net/
- '\1 - N your relay domain
o J

HTTP/1.1 200 OK HTTP/1.1 200 OK and API key (frEE)

{ "feed": [{"entry": ... { "feed": [{"entry": ...

Yaler with Netduino Plus

To set up remote Web access, follow
https://yaler.net/netduino

©90

Mash-ups

Mash-ups

A mash-up combines two or more Web services
Once devices have APIs, they become scriptable

Logic moves out of device, into the Cloud, e.g.
Web-enabled LED + Yahoo Weather API =
ambient weather notification

Note: the loT enables physical mash-ups of things

Mash-ups

HTML combining data from multiple APIs on the
Web client, using Javascript XMLHttpRequest to
get data (in JSONP, to bypass same origin policy)

Scripting (C#, Python, Go, ...) glue code hosted
on a desktop or in the cloud (EC2, AppEngine ...)

Mash-up platforms (IFTTT.com, Zapier.com, ...)

Note: open data formats and APls enable mash-ups

How the Internet works

If you wonder what TCP/IP, HTTP or DNS means
- or care about the difference between protocol,
data format and API, read on...

q4e

% S
Sl
PP 10

& ‘ X
UeLa [Fpea?

THE ARPA NETwWORK

PDEC (949
@9

Protocols

Parties need to agree on how to exchange data

(communicating = exchanging data according to
a protocol)

e.g. Ethernet links local computers physically,

TCP/IP is the foundation of the Internet, and
HTTP is the protocol that enables the Web

Note: protocols are layered, e.g. HTTP messages

transported in TCP/IP packets sent over Ethernet

TCP/IP

IP (Internet Protocol) deals with host addressing
(each host has an IP address) and packet routing

TCP (Transmission Control Protocol): connection
oriented, reliable data stream (packets in-order,
errors corrected, duplicates removed, discarded
or lost packets resent) from client to server

Note: DHCP assigns an IP address to your device

which is mapped to the device’s MAC address SIon

HTTP

HTTP (Hypertext Transfer Protocol) enables the
distributed, collaborative system we call the Web

Browser G,oof,!e,
. C lient erver
The client sends an HTTP request, ;]

GET /search?q=T

the server replies with a response oo vgpoecon

HTTP Message = Request|Response HTTP/ 11 300 oK
Content-Length: ...

Request = (GET|POST|...) Path CRLF *(Header CRLF) CRLF BOQY ,ru content..

——————
- — . - =-=r

CRLF = "\r\n"
(Read the spec: http://tools.ietf.org/html/rfc2616)

Note: HTTP is human readable, i.e. it’s easy to debug

URIs

The URI (Uniform Resource ldentifier) is a string
of characters used to identify a resource

http://blog.tamberg.org/2011-10-17/side-projects.html

scheme authority = host [*: port] path

(Read the spec: http://tools.ietf.org/html/rfc3986)
QR codes, NFC tags can contain a machine readable URI
loT: URIs can refer to things or their physical properties

Note: good URIs can be hand-written on a napkin
and re-typed elsewhere, without any ambiguity

DNS

DNS (Domain Name System) maps Internet
domain names to one or more IP addresses

Try it in your desktop computer terminal, e.g.
S nslookup google.com
173.194.35.6 ...

Note: if your device doesn’t support DNS you can
connect to the server’s IP, but beware of changes

Data formats

Parties need to agree on what is valid content
(parsing = reading individual content tokens)

CSV: easy to parse, suited for tables, old school
JSON: easy to parse, de facto standard

XML: used by many services, W3C standard
Semi-structured text, e.g. Twitter’s @user, #tag
Binary formats, e.g. PNG, MP3, ...

©90

RSS

In addition to generic data formats like CSV,
JSON, XML there are refinements that add
semantics to the document

RSS (or Atom) is a data format for lists of items

Invented for blogs, RSS is great for data feeds

Note: RSS documents are also XML documents,

but not all XML documents contain valid RSS
)

HTML

HTML (Hypertext Markup Language) is a data
format describing how a Web page should be

structured and displayed

Look at the HTML (and Javascript) code of any
Web page with "view source" in your browser

Note: HTML documents are not always valid XML
documents, but Web browsers are very forgiving

©90

APIs

An API (Application Programming Interface), is
an agreement between clients and providers of
a service on how to access a service, how to get
data out of it or put data into it

The Ul (User Interface) of a service is made for
humans, the API is made for other computers

Note: good APIs are documented or self-explanatory

REST

REST (Representational State Transfer) is a style
of designing an API so that it is easy to use

REST APIs use HTTP methods (GET, PUT, POST,
DELETE) to let you perform actions on resources

REST APIs can be explored by following links

Note: good Web Uls are often built following the
same principles, therefore REST APIs feel natural

Sharing network connections

Most newer computer operating systems allow
sharing network connections with other devices

Mac OSX: System Preferences > Sharing > Internet
Sharing > From Wi-Fi to Ethernet

Windows 7: Control Panel > View network status and
tasks > Change adapter settings > right click Wireless
Network Connection > Properties > Sharing > [x] Allow
other network users to connect ... > Local Area
Connection

Note: helpful for demos, if there’s Wi-Fi but no LAN

Debugging Web services

Chrome > Inspect Element > Network, Console

cURL for HTTP requests (http://curl.haxx.se/)
Requestbin for Webhooks (http://requestb.in/)

Fiddler (http://www.fiddler2.com/)
WireShark (http://www.wireshark.org/)

©90

Debugging USB or Bluetooth

On Mac OSX and Linux
list connected devices with Is /dev/tty*
display output with screen /dev/tty... 9600

On Windows
list devices, fix drivers with devmgmt.msc
display serial output with PUTTY

©90

Energy

Wall socket, Power over Ethernet (w/ adapters),
batteries (direct or Minty Boost USB charger),
LiPo batteries (also shields), solar panels, ...

Low power: lets hardware sleep to save energy

Future: new battery technologies, ultra low
power hardware, energy harvesting

Note: Moore’s law does not apply to batteries 600

Learning more

Electronics: Ohm’s law, Kirchhoff’s current and voltage
law (KCL & KVL), Make: Electronics by Charles Platt

Interaction Design: Smart Things by Mike Kuniavsky,
Emoticomp blog post by Ben Bashford, BERG blog

Physical Computing: Making Things Talk by Tom Igoe
REST: RESTful Web Services by Leonard Richardson
Programming: read other people’s code

loT: Designing the Internet of Things by Adrian McEwen
and Hakim Cassimally, Postscapes.com, loTList.co

Note: MechArtLab Zlrich has an Openlab on Tuesda

Reducing E-waste

Tired of hacking?

Donate your hardware to a local hackerspace...

e.g. MechArtLab
Hohlstrasse 52
8004 Zirich

©90

DIY IOT FTW

@0 °

